Efficient calculation of molecular configurational entropies using an information theoretic approximation.
نویسندگان
چکیده
Accurate computation of free energy changes upon molecular binding remains a challenging problem, and changes in configurational entropy are especially difficult due to the potentially large numbers of local minima, anharmonicity, and high-order coupling among degrees of freedom. Here we propose a new method to compute molecular entropies based on the maximum information spanning tree (MIST) approximation that we have previously developed. Estimates of high-order couplings using only low-order terms provide excellent convergence properties, and the theory is also guaranteed to bound the entropy. The theory is presented together with applications to the calculation of the entropies of a variety of small molecules and the binding entropy change for a series of HIV protease inhibitors. The MIST framework developed here is demonstrated to compare favorably with results computed using the related mutual information expansion (MIE) approach, and an analysis of similarities between the methods is presented.
منابع مشابه
Thermodynamics-Based Evaluation of Various Improved Shannon Entropies for Configurational Information of Gray-Level Images
The quality of an image affects its utility and image quality assessment has been a hot research topic for many years. One widely used measure for image quality assessment is Shannon entropy, which has a well-established information-theoretic basis. The value of this entropy can be interpreted as the amount of information. However, Shannon entropy is badly adapted to information measurement in ...
متن کاملAnalysis of Biological and Chemical Systems Using Information Theoretic Approximations
The identification and quantification of high-dimensional relationships is a major challenge in the analysis of both biological and chemical systems. To address this challenge, a variety of experimental and computational tools have been developed to generate multivariate samples from these systems. Information theory provides a general framework for the analysis of such data, but for many appli...
متن کاملEstimating Absolute Configurational Entropies of Macromolecules: The Minimally Coupled Subspace Approach
We develop a general minimally coupled subspace approach (MCSA) to compute absolute entropies of macromolecules, such as proteins, from computer generated canonical ensembles. Our approach overcomes limitations of current estimates such as the quasi-harmonic approximation which neglects non-linear and higher-order correlations as well as multi-minima characteristics of protein energy landscapes...
متن کاملEvaluation of configurational entropy methods from peptide folding-unfolding simulation.
A 4-micros molecular dynamics simulation of the second beta-hairpin of the B1 domain of streptococcal protein G is used to characterize the free energy surface and to evaluate different configurational entropy estimators. From the equilibrium folding-unfolding trajectory, 200 000 conformers are clustered according to their root-mean-square deviation (RMSD). The height of the free energy barrier...
متن کاملOn the Configurational Entropy of Nanoscale Solutions for More Accurate Surface and Bulk Nano-Thermodynamic Calculations
The configurational entropy of nanoscale solutions is discussed in this paper. As follows from the comparison of the exact equation of Boltzmann and its Stirling approximation (widely used for both macroscale and nanoscale solutions today), the latter significantly over-estimates the former for nano-phases and surface regions. On the other hand, the exact Boltzmann equation cannot be used for p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 116 9 شماره
صفحات -
تاریخ انتشار 2012